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I. Introduction.

Path planning and visibility are two central areas in Computational Geometry and

Robotics. In path planning one usually wants to find a shortest collision-free path between

two points. In many cases there is a close relation between shortest paths and visibility. For

example. 2-d shortest paths are found using visibility graphs [LP84, We85. GMS71L algo-

rithms for shortest paths inside a polygon make heavy use of visibility propen,-.

[AA*85.GH*861. Most research on visibility deals with stationary, vision. The Art Gallery

problem asks for the minimum numb .- of watchmen (guards) that need to be stationed in a

polygonal Callerv so that each point in the Gallery is visible to at least one of them. There

has been considerable research on the Art Gallery problem and its variations, most of which

can be found in [O'R87]. Some visibility problem- from a moving viewpoint are con-

sidered in [EO83].

Watchman routes combine path planning and visibility considerations. The watchman

route problem [CN88] asks for the shortest route from a point s back to itself and with the

property that each point in a given space is visible from at least one point along the route.

Finding shortest watchman routes in polygons with holes and simple polyhedra is NP-Hard

[CN881. An O(n loglogn) algorithm for finding shortest watchman routes in simple rectil-

inear polygons is given in [CN88] and an O(n4loglogn) algorithm for simple polygons is

presented in [CN87]. These algorithms identify a set of segments inside the polygon that a

watchman route must visit and construct a shortest route by unrolling the polygon (using the

segments as mirrors) and solving a shortest path problem in the resulting polygon.

While most research deals with shortest paths and visibility issues for the interior of

polygons, there has been significant interest on similar problems for the exterior. The Art



Gallen' problem., . hen translated to the exterior cr the polygon, becomes the Fortress prob-

lem OR87]. Weak internal and external ,isibilitv are considered in IATSl. TA821. Sector

visibility, a restricted form of weak visibility, is considered in [BKTS9I. The problem of

computing the external geodesic diameter of a simple polygon is considered in lST87,

AA*891.

In this paper we look at the external watchman rnute problem. NV,: az. z:ven :i... i

polygon and we want to design a shortest route such that each point in the exterior of the

polygon is visible from some point along the route. There are many similarities betveen the

external and internal watchman route problems but also significant differences. The exter-

nal watchman route problem is at least as hard as the internal one because we can use the

following reduction to obtain a shortest internal watchman route by solving an external

watchman route problem. Given a polygon Q and a starting point s in its boundary', we

enclose Q in a rectangle and connect one of the sides of the rectangle to the starting point s

with a thin corridor (see Figure 1). Then, any shortest external route in the resulting

polygon Q' will contain the shortest internal route as a subpath. Note that the above

transformation of the internal to the external watchman route problem takes On ) and

assumes that the starting point s on the boundary of the polygon is given as part of the

input. The complexity of the internal watchman route problem for simple polygons when a

starting point is not specified remains an open problem.

In the next section we present an optimal O(n) time algorithm for finding shortest

external watchman routes for convex polygons. In Section III we present an 0(n 4 loglogn)

algorithm to find a shortest external route for a simple polygon. In section IV we consider

external routes for special classes of polygons.



I. External Watchman Routes for Convex Polygons.

Let Q be a convex polygon with n vertices v .. v,, indexed as they are visited in a

ciock~wise scan of the boundary ofQ. The edges of Q are indexed similarly. i.e.. e, = V;,

v; . 1 < i < n (with v0 = v, ). We want to find a shortest route from which the exterior of Q

is visible.

Since Q is convex, its convex hull is the same as the boundary of Q. Note that the

route that follows the boundary of Q is an external watchman route. In fact it may be a

shortest external v, atchman route. We refer to external routes that wrap all the way around

the rolygon as convex hull routes, i.e.. convex hull routes have the property that any outgo-

ing ray from any point on the boundary of Q intersects the route. We refer to ail other

external watchman routes as 2-leg routes. A route - of this type has tw'o extreme points

(e.g.. points x, y in Figure 2) and consists of an inner path 7r and an outer path ,to, both

of which connect these two points. The inner path does all the work, i.e., the exterior of Q is

visible from 7t/. The outer path serves only to complete the route. The extreme points are

taken to be such that the inner path is as short as possible, i.e.. we can define the extreme

points to be the endpoints of the shortest subpath from which the exterior of Q is visible.

Lemma 1: Every shortest external watchman route must contact the boundary of Q.

Proof: Let it be a shortest external watchman route for Q and suppose that it does not

contact the boundary of Q. If r is a convex hull route, construct a supporting Line of Q and

find its first intersections with it on either side, say at points x, y. Let n' be the convex hull

route obtained by replacing one of the spans connecting x, y with the supporting segment

between these points. If it is a 2-leg route there must be some point z olong the boundary of

Q from which some outgoing ray does not intersect 7t. Construct the two supporting lines of



from the point z on either side of this ray and let x. v be contacts of the supporting lin.es

With , respeLti'elv. Rotate -L about x so that - will i,',ersect the supporzing line throuu_, y

unn l contacts the boundar of Q. Let ,' be the 2-leg route obtained from 7, bv rotating as

described above and replacing the portion(s) of 7, that has rotated past the supporting line

through v with the corresponding scgment(s) of the supporting line. In both cases -t' is s:: .

an external watchman route and is shorter than 7r, a contradiction. Q.E.D.

Then. without loss of generality, we only consider routes that contact .j, he inner

path of a 2-leg route can be further partitioned into three subpaths. The middle subpath ,

is tte body of -he route and, for convex polygons, it follows the boundary of Q; the '.%.o

outside sections tL ,ipR are the left, right legs of the route and connect ,t with the extreme

points x, y. The legs start at the vertices where 7r, first leaves the boundan of Q on either

side. Note that any, one of the three subpaths (and even both legs) of 7t1 may be empty.

Theorem 1: A shortest external watchman route 7r for a convex polygon Q either foi-

lows the boundary of Q or it is a 2-leg route in which the two legs are supporting segments

of Q that are perpendicular to the extensions of two adjacent edges of Q, =,,t follows the

boundary of Q and ito = it1 .

Proof: First consider the class of convex hull routes. The route that follows the boun-

dary is the shortest in that class. Of the remaining routes, suppose that there is a route p that

is not a 2-leg route of the type described above but is shorter than a shortest 2-leg route 7:.

There is a pair of adjacent edges in Q such that each leg of p comes in contact with the

extension of one of these edges (if not, p does not see one of the edges and can not be an

external watchman route). But then the route it' (of the type described in the statement of

the Theorem) with legs that are supporting segments of Q and perpendicular to the exten-



sions of the same two edges is not longer than p and. since 1 is the shortest amonc all the 2-

lez routes like r'. it follows that p is at leas: as !on,, as n, a contradiction. Q.E.D.

To construct a shortest external watchman route, we consider all pairs of adjacent

edges e,, e ,1 and construct the shortest 2-Ieg route for each pair (eacn route will have !ecs

perpendicular to the corresponding pair of edges). Then we select the shortest of the 2-leg

routes. compare it with the route that follows the boundary of Q and report the shorter of the

two as a shortest external watchman route.

Theorem 2: A shortest external watchman route for a convex polygon can be con-

structed in 0(n

Proof: For a given pair of adjacent edges the construction of the shortest 2-leg route

takes O(n ). The perpendicular supporting segments can be found in O(logn ) using binary

search on the boundary of the polygon (similar to supporting line algorithms [PS85]). Hay-

Lng one 2-leg route, we can find the rest of them in O(n ) by walking around the polygon. As

we consider successive pairs of adjacent edges, the contacts of the perpendicular supporting

segments advance around the polygon and all the 2-leg routes can be computed at a cost of

0(1) per edge since we consider each edge a constant number of times during these

advances. Computing the length of the boundary route can be done in O(n). Then the

overall complexity is O(n). Note that this is optimal since it may take O(n ) to report a shor-

test route. Q.E.D.

The example of Figure 2 establishes that there can be at least one 2-leg route that is

shorter than any convex hull route. A vertex v of Q is a convex separator, if the

corresponding two-leg route (with legs perpendicular to the extensions of the edges incident

on v ) is shorter than the shortest convex hull route. It is useful to determine how many con-



vex separators a convex polygon 0 can have. We use the notation x-y to refer to the por- 

tion of the convex hull of the polygon from point x to point y in a clockwise scan and [x-y] 

to represent its length. Intermediate points may be included for clarity. For a straight line 

segment connecting x, >\, we use xy to represent the segment and [xy] to represent its 

length. 

Let 7i be a 2-leg route that is shorter than the shortest convex hull route, let v be the 

corresponding convex separator and let a7 b be the vertices where the two legs of K attach 

to the polygon. The body of % is the span a-h and all other vertices in this span are said to 

be in the interior of the body of K. 

Lemma 2: If v' is a convex separator for Q then v' can not be in the interior of the 

body of Tt. 

Proof: Let TT/ be the 2-leg route corresponding to v' and suppose that v' lies in the inte- 

rior of the body of n. Then the two routes must cross each other on both sides of the 

polygon; otherwise 7t' will not be a watchman route as the edges incident on v' would not be 

visible from it (Figure 3 illustrates a typical case). But then we have that the union of por- 

tions of the inner paths of the two routes wraps completely around Q, i.e. it is at least as 

long as the shortest convex hull route. For example, in Figure 3, the two routes cross at 

points u, t and the union of the portions [u-a-v'-b-t], [t-a'-v-b'-u] of the inner paths 

of the two routes is longer than the shortest convex hull route. Since the outer paths of TT., K 

are equal in length to the inner ones, it is impossible for both TT and TT/ to be shorter than the 

shortest convex hull route. Thus v' can not lie in the interior of the body of TC. Q,E.D. 

We define the angle of a convex separator to be the interior angle in Q that is formed 

by the edges incident on the separator (i.e., angles are always less then 180 degrees because 



of the convexity of Q). Let v be the convex separator with maximum angle in Q (arbi- 

trarily break any ties). From Lemma 2 we have that there is no other convex separator in 

the interior of the body of it, the 2-leg route corresponding to v. Consider now additional 

convex separators that may lie outside the body of K. 

Lemma 3: There can not be a second convex separator for Q that lies outside the body 

Of E. 

Proof: Without loss of generality, assume that there exists a second convex separator 

v' in the span b-v (see Figure 4a; the case where v' is in the span v-a is similar). Note 

that the convexity of the polygon implies that a' is at or counterclockwise from a and b' is 

at or counterclockwise from b. Also, vertex bf can not be in the span v'-v (we can not 

have a perpendicular supporting line from it to an edge incident on v') and vertex a can not 

be in the interior of the span v-v' (that would place v in the interior of the body of the route 

corresponding to v' contradicting Lemma 2). 

Consider the case shown in Figure 4a. If both TU, TU' are shorter than the shortest convex 

hull route, we have: 

2([ya']+[a-a-b']+[b'x]) < {v'-a'-b'-v']y 

2([wa]+[a-b'-b]+[bz]) < [v-a-b-v] = [v'-fl'-^'-v']. 

If we take the sum of the two inequalities, remove common terms and divide by two we 

have: 

[b'x]+[$m^+lbzMwaMah'] < [b-v'-v-a'l 

But [b -v '—v -a *] is less than [bz ]+[ry ]+[ya'] and we have: 

([waMab^b'x]) < [zy]. 

Since the polygon is convex, the lines through bz, ay intersect below the polygon (or are 



parallel if v, v' are adjacent). Then [wa']+[a&']+[b'x] is larger than [zy] (see detail in Fig- 

ure 4a), a contradiction. 

Similar arguments apply to all cases where w, x are both at or outside the lines through 

ya and bz. Since v * b , point X is always outside the line through bz. However, point w 

may be inside the line through ya and this occurs only if a = v. For these cases, we show 

that v' has a larger angle than v, contradicting our assumption that v is a separator with 

largest angle. This situation is illustrated in Figure 4b where we have that a -bf (the case 

where a # b* is similar). Let 9 be the angle for v and let 6' be the angle for v\ Angle 6' is 

always greater than 90 degrees because v* is inside the right angle formed by bz and the 

extension of the edge incident on v. Since v , v' are convex separators, we have that: 

2([wa}+[a-b]+[bz]) < [v-a-b-v] 

2([yv }+[v -JBf]+Wx ]> < (V -v -bf -v' ] 

If we take the sum, remove common terms and divide by two we have: 

{[wa]+[b'x])<\yz] <[vz] 

Consider now the quadrilateral shown in Figure 4b (detail) with corners v, w, x and i . 

The angles at corners W, i are right angles. Then, from the relation above, it follows that 

the side w'x is smaller than the side vi . This implies that the lines through vw' and zx 

intersect above the quadrilateral which means that the angle at corner v is less than 90 

degrees. This contradicts our assumption that v is a convex separator with largest angle 

(we have already shown that y' has an angle larger than 90 degrees). Similar arguments 

hold for the case when b' is clockwise from a or b' is in the interior of the span v—a. Thus, 

there can not be a second convex separator outside the body of the 2-leg route correspond- 

ing to the convex separator with largest angle.      Q.E.D. 
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From the above lemmas it follows that, if v is a convex separator with largest angle in 

Q, there can not exist a second convex separator in the interior or outside of the body of the 

corresponding 2-leg route K. Then the only vertices where additional convex separators 

may occur are the vertices a ,b, the endpoints of the body of K. 

Corollary 1: A convex polygon Q can have at most three convex separators. 

A triangle is an example of a convex polygon that has three convex separators. 

in. External Watchman Routes in Simple Polygons. 

Let O be a simple polygon with n vertices v i,...,vn and n edges e; = (v,-_l3 v(), 1 < i < 

n (with v0 = vrt). Consider the extensions of each polygon edge to the exterior of the 

polygon. Each of them borders a region (bounded by the half-plane associated with the 

edge and possibly the boundary of the polygon and other half-planes) from which the 

corresponding edge is visible. An external watchman route may see an edge either by cross- 

ing its extension, or by visiting a point in the region from which the whole edge is visible or 

by coming up to its extension and turning back (Figure 5). We define a cave as any area 

between the polygon and the convex hull such that there is at least one edge in it such that 

the region from which it is visible does not intersect the convex hull of the polygon. The 

areas enclosed by the convex hull edges e i, e2 in Figure 6 are caves. The significance of 

caves lies in the fact that any external route must enter a cave in order to see the edges 

inside it, i.e., patrolling along the convex hull is not sufficient. 

As in the convex case, we have two types of routes for a simple polygon. The shortest 

convex hull route follows the convex hull of Q entering caves along the way. A shortest 

convex hull route is shown in Figure 6. Again we have 2-leg routes but there is a greater 

variety of them that can be shortest external watchman routes overall.   Unlike the convex 
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case, a shortest 2-leg route does not necessarily follow a path twice. The body of its inner 

path may need to enrer caves along the way while the outer path will just follow the convex 

hull in those areas. We let the iegs start at the vertices in the convex hull where the outer 

path last goes outside the convex hull on either side of the body of the route. The various 

types of legs that occur in shortest 2-leg routes are illustrated in Figure 7. Each leg of the 

route can be a supporting segment that is perpendicular to the extension of some edge (Fig- 

ure 7a), a supporting segment from the intersection of two such extensions (Figure 7b), a 

supporting segment from an endpoint of a polygon edge (Figure 7c; note that the leg is 

empty in this case) or a full fledged watchman path that enters a cave (Figure 7d) or visits a 

cave and the extensions of some additional edges (Figure 7e). In the first three cases (Fig- 

ures 7a-c) the outer path will overlap with the legs and follow the convex hull in the section 

covered by the body of the route. 

Lemma 4: The shortest convex hull route can be constructed in 0(nHoglogn). 

Proof: The shortest convex hull route follows the convex hull except in areas where a 

convex hull edge (v; tVj) encloses a cave. We need to find a shortest watchman path from vj 

to vj from which the interior of the cave (i.e., the corresponding exterior of the polygon) is 

visible. This problem is equivalent to the internal watchman route problem in a simple 

polygon (the cave) and the algorithm in [CN87] can be used to find a shortest path. (The 

fact that the watchman path for a cave has a fixed starting point and a fixed, but different, 

end point is not significant; it requires a minor and trivial modification to the algorithm in 

[CN87]).      Q.E.D. 

To compute the shortest 2-Ieg route for a simple polygon we need a way to separate the 

edges of the polygon into three sets; two of the sets will contain the edges visible to each of 
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the !,.gs while the third set will contain the remaining edges (thtse will be 'seen from the

bodv of the route). If we know the edges that each leg is to cover, we can construct a shor-

tes: 2-leg route by solvir. an internal watchman route problem. However there is an

exponential number of ways in which to partition the edges of Q into the three sets. The

number of partitions we need to consider is significantly reduced by the fo!lowing obsen-a-

Don.

Lemma 5: If a 2-ieg route is shorter than the shortest convex huil route, then the

extreme points in each leg can not be visible to each other.

Proof: If the extreme points are visible to each other, the straight line segment con-

necting them is shorter than the outer path of the 2-leg route. Therefore the 2-leg route can

not be shorter than the shortest convex hull route. Q.E.D.

Lemma 5 establidhes that there must be a spike in the boundary of the polygon between

the legs of a 2-leg route. The spike is large enough so that it is preferable for the route to go

back around the rest of the polygon rather than go around the spike. Note that, in addition to

the extreme points in the two legs, Lemma 5 holds for any pair of points in the outer path

that are not in the same segment. In addition, we can not have an edge to the left (right) of

the spike covered by the leg that is to the right (left) of the spike.

Lemma 6: Let i be a 2-leg route that is shorter than the shortest convex hull route for

a simple polygon Q and let a,b be the convex hull vertices where the left, right legs staii

respectively. Then there is a vertex v on the convex hull of Q such that all edges in the

span v-b are seen by the right leg and all edges in the span a-v are seen by the left leg of

the route.

nnl m nm mm m m nnm m mn mun Il N n himi I
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Proof: From Lemma 5 we have that there is a vertex v on the convex hull of Q tnJE

lies between the two legzs of the route ,. Suppose that there is an edge e in the span -r

that is seen by the left leg of the route (the leg that lies on the opposite side of v ) and an

edge e' between v and e that is seen by the right leg of the route (see Figure S. iNote that.

if this situation does not occur for v, some other vertex in the span v -b will satisfy the con-

ditions of the Lemma). Since edges e, e' are at or inside the convex hull of the polygon. the

convexity of the convex hull implies that the two legs are visible to each other contradicting

Lemma 5. Q.E.D.

Let v be a vertex that satisfies the conditions of Lemma 6. Vertex v defines a shortest

2-leg route since it determines the partition of the edges for the two legs of the route. Since

v is a convex hull vertex, it follo, s that we need consider at most O(n ) 2-leg routes. If ti'e

shortest 2-leg route corresponding to v is shorter than the shortest convex hull route for Q.

v is a separator of Q. We can reduce the number of 2-leg routes that we need to construct

bv making use of Corollary I for convex polygons to show that the number of separators of

Q is small.

Lemma 7: Any separator for Q is also a convex separator for the convex hull of Q.

Proof: Let v be a separator of Q and consider the corresponding shortest 2-leg routes

it, p for Q and for the convex hull of Q respectively. Let a, b be the vcrtices of the convex

hull where the legs of p start. Let x, y be the extreme points of p (see Figure 9). In order

for p to be shorter than the convex hull of Q, we should have:

[at ]+[x -a -b -y ]+Lyb I < [h -v-a ] (1)

To distinguish between paths along the convex hull and paths along the 2-leg route it, we

use the notation a =h, [a =b I for the latter. Let X. Y be the intersections ot ,7o with the
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convex hull that are closest to the extreme points of z: Since - is shorter than the shortes:

convex hull route for Q, we have:

[a-=X ]+[X-a-b-Y]+[Y=h I < [b=v---a

But [b=v=a I is less than [b=Y+[Yv ]-,[vX ]+[X-a ]. If we replace the right hand side

above we have that fX-a -b -Y] < [Yv ]+[vX] or equivalently:

[X-a-b-Y]-,[X-a ]+[b-Y] < [b-Y]-*-[Yv I+[vX ]+[X-a 1. (2)

Comparing inequalities (1), (2) we have that the left hand side of (2) is larger than the left

hand side of (1) and the right hand side of (I ) is larger than the right hand side of (2). That

is. inequality (2) is harder to satisfy than inequality I1). Thus, inequality' Il) holds and v is a

convex separator for the convex hull of Q. Q.E.D.

Theorem 3: A shortest external watchman route for a simple polygon can be con-

structed in O(n'loglog, ).

Proof: From lemma 7 and corollary 1, it follows that there are at most three separators

to consider in constructing 2-leg routes, Moreover, these separators can be found in O(nJ

time. Let v be such a separator and let u be a convex hull vertex that is contacted by the

shortest 2-leg route for the convex hull of Q. We enclose the polygon in a large rectangle

and connect v to the rectangle with a corridor that is perpendicular to the side opposite v.

Then a shortest 2-leg route can be constructed by solving the internal shortest watchman

route problem in the resulting polygon with u as the starting point of the route. This can be

done in O(n 4loglogn ) [CN871. We repeat this for any additional separators. Since there are

at most three separators, the complexity remains O(n 41loglogn). From Lemma 4, we have

that the shortest convex hull route for Q can be constructed in O(n 4loglogn ) as well. Then

the shorter of the shortest convex hull route and the up to three 2-leg routes is a shortest
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external watchman route for Q,

Note that the complexity of the exte-nal watchman route problem would be reduced if

faster algorithms for the internal watchman route problem were av ilable. Essentially, we

are reducing the external watchman route problem into up to three instances of the internal

watchman route problem on polygons of similar size (to find the 2-leg routes associated with

the separators) and a set of smaller internal watchman route problems for the caves. The

complexity of the transformation itself is O(n logn) since we need to construct the convex

hull to identify the caves (the rest takes only On n). Q.E.D.

IV. External Routes for Restricted Classes of Polygons

In the previous section we presented an 0(naloglogn) algorithm to find a shortest

external watchman route for a simple polygon. The main contributing factor to this com-

plexity is the complexity of the internal watchman route problem. There are special classes

of polygons for which internal routes can be found faster. An O(n ) algorithm for monotone

rectilinear polygons and an O(n loglogn ) algorithm for rectilinear polygons are presented in

[CN88]. From Section II, we have that special classes of polygons may allow the shortest

external route to be constructed directly (without solving an internal route problem). In this

section we develop faster algorithms for some additional classes of polygons.

Rectilinear Polygons: In a rectilinear polygon, the caves will also be rectilinear. Then we

can identify a separator (if there is one) in O(n ) using the convex hull of the polygon and we

can construct the shortest 2-leg route and the shortest convex hull route in O(n loglogn)

using the internal watchman route algorithm in [CN88]. Thus we have:
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Corollary 2: A shortest external watchman route for a rectilinear poiygon can be

found in O(n loglogn ).

Monotone Polygons: A polygon is monotone if its boundary consists of two chains that are

monotone with respect to an axis of monotonicity. Without loss of generality we assume

that the polygon is monotone with respect to a vertical line. A monotone polygon can not

have any caves (the vertices in a cave do not project monotonically on any axis of monoton-

icitv for the convex hull). The shortest convex hull route is then the convex hull itself and

can be constructed in On i. If there is a separator, the construction of the shortest 2-leg

route involves the construction of extreme chains on either side of each separator (Figure

10). Each extreme chain is actually a portion of the boundary of the region (kernel) from

which the edges on one side of the separator are visible. To construct each chain in O(n

we start from the edges adjacent to the separator and build up each chain as we go upward.

For each new edge that is considered we use the far segment of the current chain to deter-

mine if the chain needs to be updated. If it does, we go inward on the current chain throw-

ing away segments until we find the place where the segment corresponding to the new edge

needs to be inserted (this will now become the far segment of the new chain). The total

work per edge is 0(l) because the cost of walking inward on a chain can be distributed on

the segments that are removed. Each leg of the 2-leg route is either perpendicular to a seg-

ment in a chain or a supporting segment from one of the vertices in the chain. The latter

occurs only if there is no perpendicular supporting segment. We can construct each leg in

O(n) be walking inward on each chain and updating the supporting segments. Then the

shortest 2-leg route can be constructed in O(n).



Corollary 3: A shortest external watchman route for a monotone polygon can be co.-

structed in O(n).

Star Polygons: A star polygon has the property that there is at least one point in its interior

from which all of the interior is visible. Again it is easy to see that a star polygon can not

have any caves. In star polygons that have a separator. the shortest 2-leg route can be con-

structed as for the monotone case. Typical shortest 2-leg routes for star polygons are sho\kn

in FigLure !11.

Corollary 4: A shortest external watchman route for a star polygon can be construc:ed

in O(n).

Spiral Polygons: A spiral polygon consists of a convex and a reflex chain. Shortest

internal watchman routes for a spiral polygon can be const-ucted in O(n) [NW89]. With

respect to external routes, a spiral polygon is essenially a convex polygon with a single

spiral cave.

Corollary 5: A shortest external watchman route for a spiral polygon can be con-

structed in O(n ).

V. Concluding Remarks.

We presented an O(n 4loglogn) algorithm to find a shortest external watchman route

for a simple polygon and more efficient algorithms for finding shortest external routes for

restricted classes of polygons. An interesting open problem is to find shortest external

routes (or good approximation algorithms) for a collection of polygons. The general prob-

lem for any number of polygons is NP-hard (since finding shortest internal watchman routes

in polygons with holes is intractable [CN88]).
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Figure 1. Reducing the internal watchman route problem to the
external watchman route problem.

IT /

Figure 2. A 2-leg watchman route.
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Figure 3. Proof of Lemma 2.
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Figure 4. Proof of Lemma 3. 
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(CL) (b C.

Figure 7. Types of legs for shortest 2-leg routes for simple polygons.
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Figure 8...P:ooxf of Lemma 6.
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Figure 9. Proof of Lemma 7.



Figure 10. A shortest external route for a monotone polygon.
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Figure 11. Shortest external routes for star polygons.


